Ένας απλός τύπος μπορεί να αλλάξει την πορεία της ανθρωπότητας. Παραθέτουμε 10 εξισώσεις που το αποδεικνύουν...
Πηγή: https://www.sansimera.gr/listes/25
© SanSimera.gr
Πηγή: https://www.sansimera.gr/listes/25
© SanSimera.gr
Ένας απλός τύπος μπορεί να αλλάξει την πορεία της ανθρωπότητας. Παραθέτουμε 10 εξισώσεις που το αποδεικνύουν...
Πηγή: https://www.sansimera.gr/listes/25
© SanSimera.gr
Πηγή: https://www.sansimera.gr/listes/25
© SanSimera.gr
Τα πιο λαμπρά μυαλά της ανθρωπότητας χρησιμοποίησαν
τα μαθηματικά για να θέσουν τις βάσεις της μέτρησης και της κατανόησης του
σύμπαντος. Χρόνια τώρα έχει αποδειχθεί ότι ένας απλός τύπος μπορεί να αλλάξει
την πορεία της ανθρωπότητας. Παραθέτουμε 10 εξισώσεις που το αποδεικνύουν.
10.
Η Θεωρία του Χάους
Είναι κλάδος των μαθηματικών που μελετά τα σύνθετα συστήματα, των οποίων η συμπεριφορά είναι εξαιρετικά ευαίσθητη και στην απειροελάχιστη αλλαγή των συνθηκών. Ουσιαστικά, μας δείχνει πόσο οι μικρές αλλαγές μπορούν να οδηγήσουν σε συνέπειες μεγαλύτερης κλίμακας. Η Θεωρία του Χάους εφαρμόζεται παντού, από τη μετεωρολογία και την επιστήμη των υπολογιστών έως τα οικονομικά και τη φιλοσοφία.
Είναι κλάδος των μαθηματικών που μελετά τα σύνθετα συστήματα, των οποίων η συμπεριφορά είναι εξαιρετικά ευαίσθητη και στην απειροελάχιστη αλλαγή των συνθηκών. Ουσιαστικά, μας δείχνει πόσο οι μικρές αλλαγές μπορούν να οδηγήσουν σε συνέπειες μεγαλύτερης κλίμακας. Η Θεωρία του Χάους εφαρμόζεται παντού, από τη μετεωρολογία και την επιστήμη των υπολογιστών έως τα οικονομικά και τη φιλοσοφία.
9.
Η Θεωρία της Πληροφορίας
Είναι ένας κλάδος των μαθηματικών που μελετά την κωδικοποίηση της πληροφορίας στο σχήμα της ακολουθίας συμβόλων και της ταχύτητας που αυτή η πληροφορία μπορεί να μεταδοθεί. Εφαρμογές της περιλαμβάνουν τη συμπίεση των δεδομένων και την κωδικοποίηση διαύλου. Η έρευνα σε αυτό το πεδίο είναι θεμελιώδης στην εξέλιξη του διαδικτύου και της κινητής τηλεφωνίας.
Είναι ένας κλάδος των μαθηματικών που μελετά την κωδικοποίηση της πληροφορίας στο σχήμα της ακολουθίας συμβόλων και της ταχύτητας που αυτή η πληροφορία μπορεί να μεταδοθεί. Εφαρμογές της περιλαμβάνουν τη συμπίεση των δεδομένων και την κωδικοποίηση διαύλου. Η έρευνα σε αυτό το πεδίο είναι θεμελιώδης στην εξέλιξη του διαδικτύου και της κινητής τηλεφωνίας.
8.
Η εξίσωση του Σρέντινγκερ
Αυτή η εξίσωση περιγράφει τον τρόπο με τον οποίο αλλάζει η κβαντική κατάσταση ενός κβαντικού συστήματος με τον χρόνο. Αναπτύχθηκε από τον αυστριακό φυσικό Έρβιν Σρέντιγκερ (1887-1961 ) το 1926 και διαμορφώνει τη συμπεριφορά των ατόμων και των υποατομικών σωματιδίων στην κβαντική μηχανική. Η εξίσωση του Σρέντιγκερ άνοιξε το δρόμο για την πυρηνική ενέργεια, τα μικροτσίπ, τα ηλεκτρονικά μικροσκόπια και την κβαντική υπολογιστική.
Αυτή η εξίσωση περιγράφει τον τρόπο με τον οποίο αλλάζει η κβαντική κατάσταση ενός κβαντικού συστήματος με τον χρόνο. Αναπτύχθηκε από τον αυστριακό φυσικό Έρβιν Σρέντιγκερ (1887-1961 ) το 1926 και διαμορφώνει τη συμπεριφορά των ατόμων και των υποατομικών σωματιδίων στην κβαντική μηχανική. Η εξίσωση του Σρέντιγκερ άνοιξε το δρόμο για την πυρηνική ενέργεια, τα μικροτσίπ, τα ηλεκτρονικά μικροσκόπια και την κβαντική υπολογιστική.
7.
Λογισμός
Ο υπολογισμός είναι ο ορισμός του παραγώγου στον διαφορικό λογισμό, ένας από τους δύο βραχίονες του λογισμού. Το παράγωγο μετρά τον λόγο στον οποίο μία ποσότητα αλλάζει. Εάν περπατήσει δύο χιλιόμετρα την ώρα, τότε αλλάζεις τη θέση σου κατά δύο χιλιόμετρα κάθε ώρα. Ο Νιούτον χρησιμοποίησε τον λογισμό για να αναπτύξει τους νόμους της κίνησης και της βαρύτητας.
Ο υπολογισμός είναι ο ορισμός του παραγώγου στον διαφορικό λογισμό, ένας από τους δύο βραχίονες του λογισμού. Το παράγωγο μετρά τον λόγο στον οποίο μία ποσότητα αλλάζει. Εάν περπατήσει δύο χιλιόμετρα την ώρα, τότε αλλάζεις τη θέση σου κατά δύο χιλιόμετρα κάθε ώρα. Ο Νιούτον χρησιμοποίησε τον λογισμό για να αναπτύξει τους νόμους της κίνησης και της βαρύτητας.
6.
Λογάριθμοι
Οι Λογάριθμοι παρουσιάστηκαν από τον Τζον Νάπιερ στις αρχές του 17ου αιώνα για να απλοποιήσουν τους υπολογισμούς. Απαντούν στο ερώτημα: «Πόσο πρέπει να πολλαπλασιάσουμε τον αριθμό Χ, για να έχουμε τον αριθμό Υ;». Οι λογάριθμοι υιοθετήθηκαν από τους ναυτιλομένους, τους επιστήμονες και τους μηχανικούς. Σήμερα οι υπολογιστές κάνουν τη δουλειά για εμάς.
Οι Λογάριθμοι παρουσιάστηκαν από τον Τζον Νάπιερ στις αρχές του 17ου αιώνα για να απλοποιήσουν τους υπολογισμούς. Απαντούν στο ερώτημα: «Πόσο πρέπει να πολλαπλασιάσουμε τον αριθμό Χ, για να έχουμε τον αριθμό Υ;». Οι λογάριθμοι υιοθετήθηκαν από τους ναυτιλομένους, τους επιστήμονες και τους μηχανικούς. Σήμερα οι υπολογιστές κάνουν τη δουλειά για εμάς.
5.
Ο δεύτερος θερμοδυναμικός νόμος
Ο νόμος αυτός μας δείχνει ότι η θερμότητα δεν μπορεί να περάσει αυθόρμητα από ένα σώμα σ’ ένα άλλο, θερμότερο από το αρχικό. Πρωτοδιατυπώθηκε το 1865 από τον Γερμανό φυσικό Ρούντολφ Κλαούζιους (1822 – 1888) και οδήγησε σε τεχνολογίες όπως οι κινητήρες εσωτερικής καύσης, η κρυογενετική και οι γεννήτριες.
Ο νόμος αυτός μας δείχνει ότι η θερμότητα δεν μπορεί να περάσει αυθόρμητα από ένα σώμα σ’ ένα άλλο, θερμότερο από το αρχικό. Πρωτοδιατυπώθηκε το 1865 από τον Γερμανό φυσικό Ρούντολφ Κλαούζιους (1822 – 1888) και οδήγησε σε τεχνολογίες όπως οι κινητήρες εσωτερικής καύσης, η κρυογενετική και οι γεννήτριες.
4.
Οι Εξισώσεις του Μάξουελ
Οι τέσσερις εξισώσεις του Σκωτσέζου φυσικού Τζέιμς Μάξγουελ (1831-1879) , που περιγράφουν τη δημιουργία και την αλληλεπίδραση των ηλεκτρικών και των μαγνητικών πεδίων. Πρωτοδημοσιεύτηκαν μεταξύ 1861 και 1862 και είναι τόσο θεμελιώδης για τον ηλεκτρομαγνητισμό, όσο οι νόμου του Νεύτωνα για την κλασσική μηχανική.
Οι τέσσερις εξισώσεις του Σκωτσέζου φυσικού Τζέιμς Μάξγουελ (1831-1879) , που περιγράφουν τη δημιουργία και την αλληλεπίδραση των ηλεκτρικών και των μαγνητικών πεδίων. Πρωτοδημοσιεύτηκαν μεταξύ 1861 και 1862 και είναι τόσο θεμελιώδης για τον ηλεκτρομαγνητισμό, όσο οι νόμου του Νεύτωνα για την κλασσική μηχανική.
3.
Το Πυθαγόρειο Θεώρημα
Το αρχαίο θεώρημα, που διατυπώθηκε μεταξύ 570-495 π.Χ, είναι μία από τις θεμελιώδεις αρχές της Ευκλείδειας Γεωμετρίας και η βάση για τον ορισμό της απόστασης μεταξύ δύο σημείων. Το θεώρημα του Πυθαγόρα, που ενδέχεται να πρωτοδιατυπώθηκε από τους Βαβυλωνίους, περιγράφει τη σχέση μεταξύ των πλευρών ενός ορθογώνιου τριγώνου.
Το αρχαίο θεώρημα, που διατυπώθηκε μεταξύ 570-495 π.Χ, είναι μία από τις θεμελιώδεις αρχές της Ευκλείδειας Γεωμετρίας και η βάση για τον ορισμό της απόστασης μεταξύ δύο σημείων. Το θεώρημα του Πυθαγόρα, που ενδέχεται να πρωτοδιατυπώθηκε από τους Βαβυλωνίους, περιγράφει τη σχέση μεταξύ των πλευρών ενός ορθογώνιου τριγώνου.
2.
Η θεωρία της σχετικότητας
Το διάσημο εγχείρημα του Αλβέρτου Αϊνστάιν (1879-1955) είναι η επικρατούσα θεωρία για τη σχέση του τόπου και του χρόνου. Πρωτοδιατυπώθηκε το 1905 και άλλαξε την πορεία της φυσικής, εμβαθύνοντας τις γνώσεις μας για το παρελθόν, το παρόν και το μέλλον του κόσμου.
Το διάσημο εγχείρημα του Αλβέρτου Αϊνστάιν (1879-1955) είναι η επικρατούσα θεωρία για τη σχέση του τόπου και του χρόνου. Πρωτοδιατυπώθηκε το 1905 και άλλαξε την πορεία της φυσικής, εμβαθύνοντας τις γνώσεις μας για το παρελθόν, το παρόν και το μέλλον του κόσμου.
1.
Ο νόμος της παγκόσμιας έλξης
Ο νόμος του κορυφαίου Άγγλου φυσικού Ισαάκ Νεύτωνα (1642-1727) εξηγεί την κίνηση των πλανητών και το πώς η βαρύτητα συμπεριφέρεται, τόσο στη Γη όσο και στο διάστημα. Για πρώτη φορά δημοσιεύτηκε στις 5 Ιουλίου 1687 στο έργο του «Philosophiae Naturalis Principia Mathematica» («Φυσική Φιλοσοφία με Μαθηματικές Αρχές»). Για 200 χρόνια ήταν η εξίσωση αναφοράς, μέχρι να αντικατασταθεί από τη θεωρία της σχετικότητας του Αϊνστάιν.
Ο νόμος του κορυφαίου Άγγλου φυσικού Ισαάκ Νεύτωνα (1642-1727) εξηγεί την κίνηση των πλανητών και το πώς η βαρύτητα συμπεριφέρεται, τόσο στη Γη όσο και στο διάστημα. Για πρώτη φορά δημοσιεύτηκε στις 5 Ιουλίου 1687 στο έργο του «Philosophiae Naturalis Principia Mathematica» («Φυσική Φιλοσοφία με Μαθηματικές Αρχές»). Για 200 χρόνια ήταν η εξίσωση αναφοράς, μέχρι να αντικατασταθεί από τη θεωρία της σχετικότητας του Αϊνστάιν.
ΠΗΓΗ: www.sansimera.gr
ΔΙΑΒΑΣΤΕ ΕΠΙΣΗΣ:
Ένας απλός τύπος μπορεί να αλλάξει την πορεία της ανθρωπότητας. Παραθέτουμε 10 εξισώσεις που το αποδεικνύουν...
Πηγή: https://www.sansimera.gr/listes/25
© SanSimera.gr
Πηγή: https://www.sansimera.gr/listes/25
© SanSimera.gr
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.